Acta Cryst. (1998). C54, 1075-1076

Rerefinement of \{1-[(2-Hydroxybenzyl-idene)aminomethyl]naphthalen-2-ol-ato(2-)- $\left.N, O, O^{\prime}\right\}$ (piperidine-N)nickel(II)

Helmut Paulus, Ingrid Svoboda and Hartmut Fuess
Strukturforschung, FB Materialwissenschaft, Technische Hochschule Darmstadt, Petersenstraße 23, 64287 Darmstadt, Germany. E-mail: de0s@hrzpub.th-darmstadt.de

(Received 6 June 1997; accepted 6 April 1998)

Abstract

The crystal structure of the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{18} \mathrm{H}_{13}-\right.\right.$ $\left.\mathrm{NO}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}\right)$], originally reported by Elmali et al. [Acta Cryst. (1995), C51, 2520-2522] has been redetermined with a split model for the piperidine ligand.

Comment

In the structure of the title compound, (I), originally reported by Elmali et al. (1995), the geometry of the piperidine ligand deviates significantly from the expected one. Four bond lengths (N2-C12, N2$\mathrm{C} 16, \mathrm{C} 13-\mathrm{Cl4}$ and $\mathrm{Cl} 4-\mathrm{C} 15)$ are reported to be $0.10-0.15 \AA$ shorter than normal single bonds, and the distances of the N 2 and C 14 atoms from the plane defined by atoms C12, C13, C15 and C16 are 0.240 (6) and $-0.226(9) \AA$, respectively (expected values are approximately 0.8 and $-0.7 \AA$, respectively). A possible explanation could be disorder of the piperidine ligand, which is also indicated by the displacement ellipsoids of atoms N2 and C12-C16. We have now repeated the structure refinement with a model where the piperidine ligand can occupy a second position rotated by 180° from the first position.

(I)

Least-squares refinement with isotropic displacement parameters for the split atoms improved the geometry of the piperidine ligand considerably. Final R values are $R 1=0.0366$ (0.0377 for the original refinement) and $w R 2=0.0842(0.0886)$ for $248(253)$ parameters. The site-occupation factors of the two positions refined to 0.65 (2) and 0.35 (2). The mean bond lengths in the piperidine rings are now $\mathrm{N}-\mathrm{C} 1.51$ and $\mathrm{C}-\mathrm{C} 1.59 \AA$,
and the distances from the plane through atoms C 12 , $\mathrm{C} 13, \mathrm{C} 15$ and C16 are 0.74 (2) and 0.95 (4) \AA for N 2 , and -0.85 (2) and $-0.99(4) \AA$ for C 14 . The geometry of the rest of the molecule remains almost unaffected.

Fig. 1. View of the major disorder component of (I). Displacement ellipsoids are plotted at the 50% probability level.

Experimental

A solution of N -(2-hydroxy-1-naphthylmethyl)salicylaldimine (5 mmol) in 50 ml of pure ethanol was prepared and piperidine (1.5 ml) was added slowly. $\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{mmol})$ was dissolved, by dropwise addition, in 30 ml of hot methanol. The mixture of the two solutions was then refluxed for 5 h . Red crystals were formed during the reflux operation and washed twice with ethanol.

Crystal data
$\left[\mathrm{Ni}\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}\right)\right]$
$M_{r}=419.15$
Orthorhombic
Pbca
$a=9.313(1) \AA$
$b=19.202$ (3) \AA
$c=22.330(3) \AA$
$V=3993.2(9) \AA^{3}$
$Z=8$
$D_{x}=1.394$ (3) $\mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical ψ scan (North
et al., 1968)
$T_{\text {min }}=0.879, T_{\text {max }}=0.997$

Mo $K \alpha$ radiation
$\lambda=0.71093 \AA$
Cell parameters from 25 reflections
$\theta=2.59-13.80^{\circ}$
$\mu=0.992 \mathrm{~mm}^{-1}$
$T=297$ (2) K
Prism
$0.28 \times 0.28 \times 0.05 \mathrm{~mm}$
Red

$$
\begin{aligned}
& 1457 \text { reflections with } \\
& I>2 \sigma(I) \\
& R_{\text {int }}=0.061 \\
& \theta_{\max }=22.98^{\circ} \\
& h=-10 \rightarrow 1 \\
& k=0 \rightarrow 21 \\
& l=0 \rightarrow 24
\end{aligned}
$$

3035 measured reflections 2774 independent reflections

3 standard reflections frequency: 120 min intensity decay: 1.9%

Stoe \& Cie (1988). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie. Darmstadt, Germany.

Acta Cryst. (1998). C54, 1076-1078

Bis(N-n-butyl-2-hydroxy-1-naphthaldiminato)nickel(II)

Yalçin Elerman, ${ }^{a}$ Ayhan Elmali, ${ }^{a}$ Ingrid Svoboda ${ }^{b}$ and Hartmut Fuess ${ }^{b}$
${ }^{a}$ Department of Physics Engineering, Faculty of Sciences, University of Ankara, 06100 Besevler, Ankara, Turkey, and
${ }^{\text {b }}$ Strukturforschung, Fachbereich Materialwissenschaft, Technische Universität Darmstadt, Petersenstraße 23, D-64287 Darmstadt, Germany: E-mail: elmali@science. ankara.edu.tr
(Received 8 December 1997: accepted Il Februar 1998)

Abstract

The title compound, bis[1-(n-butyliminomethyl)-2-naph-tholato- N, O]nickel(II), $\left[\mathrm{Ni}\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}\right)_{2}\right]$, has crystallographic inversion symmetry. Two bidentate Schiff base ligands coordinate to the Ni atom in a squareplanar arrangement. The $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{O}$ distances are 1.899 (4) and 1.823 (3) \AA, respectively.

Comment

Metal derivatives of Schiff bases have been extensively studied, and copper(II) and nickel(II) complexes play a major role in both synthesis and structural research (Garnovskii et al., 1993). Several complexes of salicylaldimine (Kessissoglou et al., 1987, 1992; Bhatia et al., 1981; Chen et al., 1989; Spartalian \& Carrano, 1989; Calligaris et al., 1972) and 2-hydroxy-1-naphthaldimine derivatives (Elerman et al., 1996; Fernández-G. et al., 1986, 1987; Cariati et al., 1985) have been studied. We report here the results of the reaction of nickel(II) with N-n-butyl-2-hydroxy-1-naphthaldimine.

The title molecule, (I) (Fig. 1), has crystallographic inversion symmetry. The two symmetry-equivalent bidentate ligands are bonded through their O and N

(I)

